skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Park, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The vacuolar sorting receptors (VSRs) are specific to plants and are responsible for sorting and transporting particular proteins from thetrans-Golgi network to the vacuole. This process is critically important for various cellular functions, including storing nutrients during seed development. Despite many years of intense studies on VSRs, a complete relation between function and structure has not yet been revealed. Here, we present the crystal structure of the entire luminal region of glycosylated VSR1 fromArabidopsis thaliana(AtVSR1) for the first time. The structure provides insights into the tertiary and quaternary structures of VSR1, which are composed of an N-terminal protease-associated (PA) domain, a unique central region, and one epidermal growth factor (EGF)-like domain followed by two disordered EGF-like domains. The structure of VSR1 exhibits unique characteristics, the significance of which is yet to be fully understood. 
    more » « less
  2. Abstract AimSpecies occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses. InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases(i.e. cleaning vs. testing)that encompass different testBlocksgrouping differenttestTypes(e.g.environmental outlier detection), which may use differenttestMethods(e.g.Rosner test, jacknife,etc.). Four differenttestBlockscharacterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed. Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application. 
    more » « less
  3. Romanach, Stephanie S. (Ed.)
    Massive biological databases of species occurrences, or georeferenced locations where a species has been observed, are essential inputs for modeling present and future species distributions. Location accuracy is often assessed by determining whether the observation geocoordinates fall within the boundaries of the declared political divisions. This otherwise simple validation is complicated by the difficulty of matching political division names to the correct geospatial object. Spelling errors, abbreviations, alternative codes, and synonyms in multiple languages present daunting name disambiguation challenges. The inability to resolve political division names reduces usable data, and analysis of erroneous observations can lead to flawed results. Here, we present the Geographic Name Resolution Service (GNRS), an application for correcting, standardizing, and indexing world political division names. The GNRS resolves political division names against a reference database that combines names and codes from GeoNames with geospatial object identifiers from the Global Administrative Areas Database (GADM). In a trial resolution of political division names extracted from >270 million species occurrences, only 1.9%, representing just 6% of occurrences, matched exactly to GADM political divisions in their original form. The GNRS was able to resolve, completely or in part, 92% of the remaining 378,568 political division names, or 86% of the full biodiversity occurrence dataset. In assessing geocoordinate accuracy for >239 million species occurrences, resolution of political divisions by the GNRS enabled the detection of an order of magnitude more errors and an order of magnitude more error-free occurrences. By providing a novel solution to a significant data quality impediment, the GNRS liberates a tremendous amount of biodiversity data for quantitative biodiversity research. The GNRS runs as a web service and is accessible via an API, an R package, and a web-based graphical user interface. Its modular architecture is easily integrated into existing data validation workflows. 
    more » « less
  4. null (Ed.)
  5. Reproductive character displacement has long been hypothesized to be a key determinant of speciation and co-existence in flowering plants. A central tenet of this hypothesis is that reproductive traits of close relatives growing in sympatry diverge more than they do where close relatives do not grow together. However, this idea remains untested across taxa and at large spatial scales. Here, we use data collected from tens of thousands of herbarium specimens to examine evidence for character displacement in flowering time for 91 closely-related pairs of animal-pollinated angiosperm species in the eastern USA. We see no evidence for overall phenological divergence in sympatry across regions, clades, or life histories. Rather our results indicate widespread convergence of flowering times in sympatry for species pairs that generally tend to flower close in time. We also find that climate change could alter the nature of these convergent flowering events by shifting them further apart in a majority species pair comparisons. Specifically, congeneric species in New England and the Atlantic Coastal Plain are projected to flower 2–4 days further apart, on average, by the mid-21st century as warming temperatures drive species-specific phenological shifts within genera. This may have significant consequences for species interactions and gene flow, especially if current sympatric convergence in flowering times has resulted from facilitative interactions between species. 
    more » « less
  6. null (Ed.)
    Interactions between species can influence access to resources and successful reproduction. One possible outcome of such interactions is reproductive character displacement. Here, the similarity of reproductive traits – such as flowering time – among close relatives growing in sympatry differ more so than when growing apart. However, evidence for the overall prevalence and direction of this phenomenon, or the stability of such differences under environmental change, remains untested across large taxonomic and spatial scales. We apply data from tens of thousands of herbarium specimens to examine character displacement in flowering time across 110 animal-pollinated angiosperm species in the eastern USA. We demonstrate that the degree and direction of phenological displacement among co-occurring closely related species pairs varies tremendously. Overall, flowering time displacement in sympatry is not common. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. We additionally identify that future climate change may alter the nature of phenological displacement among many of these species pairs. On average, flowering times of closely related species were predicted to shift further apart by the mid-21st century, which may have significant future consequences for species interactions and gene flow.Competing Interest StatementThe authors have declared no competing interest. 
    more » « less